q-特殊関数 Menu

q-ガンマ関数(q-階乗関数)

q-ガンマ関数

日:q-ガンマ関数q-Γ関数
英:q-gamma function,仏:q-fonction gamma,独:q-gammafunktion

 F. H. Jackson が定義した q-ガンマ関数
  • q-ガンマ関数の定義
は、ガンマ関数の q-類似に相当する。つまり極限操作q→1によって
q-ガンマ関数が還元される場合
が従う。さらにzが自然数のとき、q-ガンマ関数は
  • q-ガンマ関数の特殊値
のように q-階乗となる。この値は、実数方向の擬周期性とも言うべき関数等式
q-ガンマ関数の関数等式
から導ける。
 さらにガンマ関数には無い q-ガンマ関数の公式として、虚数方向の擬周期性とも言うべき
  • q-ガンマ関数の関数等式(擬周期性)
を満たす。したがってガンマ関数の相補公式で三角関数となる部分は、q-ガンマ関数の場合では
  • q-ガンマ関数の相補公式
のように楕円テータ関数が現れる。
 なお、q-ガンマ関数は、このほかにも倍数公式など多くの公式を満たす。
 複素解析関数としての q-ガンマ関数は、q-ガンマ関数の極q-ガンマ関数の極q-ガンマ関数の極において1位の極を持つ有理型関数で、零点をもたない。よって、q-ガンマ関数の逆数は超越整関数である。
 q-ガンマ関数は、q-超幾何関数を冪級数展開したときの係数を表わすために用いる等、他の q-特殊関数とともに現れることが多い。

q-ガンマ関数の記号

 実変数の q-ガンマ関数q-ガンマ関数の記号のグラフ。q=0.02~0.98 (+0.02)。
  • q-ガンマ関数のグラフ(実変数)

 zを複素変数とする q-ガンマ関数q-ガンマ関数の記号のグラフ。
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)

 zを複素変数とする q-ガンマ関数q-ガンマ関数の記号のグラフ。q=0.5 のときは周期関数になる。
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)

 アニメーション(6.09MB)
 zを複素変数とする q-ガンマ関数q-ガンマ関数の記号のグラフ。q=1/51~1 (+1/51) 。
  • q-ガンマ関数のグラフ(複素変数:動画)

 qを複素変数とする q-ガンマ関数q-ガンマ関数の記号のグラフ。
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)

 qを複素変数とする q-ガンマ関数q-ガンマ関数の記号のグラフ。
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)

q-ガンマ関数の逆数の記号

 実変数の q-ガンマ関数の逆数q-ガンマ関数の逆数の記号のグラフ。q=0.02~0.98 (+0.02)。
  • q-ガンマ関数のグラフ(実変数)

 zを複素変数とする q-ガンマ関数の逆数q-ガンマ関数の逆数の記号のグラフ。2番目は、1番目のグラフの垂直軸を常用対数目盛にした場合。
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)

 zを複素変数とする q-ガンマ関数の逆数q-ガンマ関数の逆数の記号のグラフ。q=0.5 のときは周期関数になる。2番目は、1番目のグラフの垂直軸を常用対数目盛にした場合。
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)
  • q-ガンマ関数のグラフ(複素変数)

q-ポリガンマ関数

 q-ガンマ関数を、変数zについて対数微分した
  • q-ディガンマ関数の定義
を、q-ディガンマ関数という。および、これを逐次微分した
  • q-ポリガンマ関数の定義
なる一群の関数 (q-トリガンマ関数, q-テトラガンマ関数, q-ペンタガンマ関数, …) を総称して、q-ポリガンマ関数という。ここに
  • q-ポリガンマ関数の係数とその漸化式
である※1。(以下同様。)
 q-ポリガンマ関数は極限操作q→1によって
q-ポリガンマ関数が還元される場合
のようにポリガンマ関数に還元される。
 また、q-ディガンマ関数については実数方向の擬周期性とも言うべき関数等式
  • q-ポリガンマ関数の関数等式
および特殊値の公式
  • q-ポリガンマ関数の特殊値
を満たす。ここにq-Euler定数は、後述の q-Euler 定数である。他の q-ポリガンマ関数についても、類似の公式を満たす。
 さらにポリガンマ関数には無い q-ポリガンマ関数の公式として、虚数方向では周期性
  • q-ポリガンマ関数の関数等式(周期性)
を持っている。したがって相補公式は、例えば q-ディガンマ関数および q-トリガンマ関数の場合
  • q-ポリガンマ関数の相補公式
のように、楕円ゼータ関数および楕円関数が現れる。ここに、完全楕円積分の記号完全楕円積分の記号完全楕円積分である。
 なお、q-ポリガンマ関数は、このほかにも倍数公式など多くの公式を満たす。
 複素解析関数としての q-ポリガンマ関数は、q-ガンマ関数の極q-ガンマ関数の極q-ガンマ関数の極において(m+1)位の極をもつ有理型関数である。
 q-ポリガンマ関数は、Lambert 級数などの級数総和の値として現れるほか、q-ガンマ関数と同様に他の q-特殊関数に付随して現れることが多い。

【註記】
※1:この見慣れない記号は、独自に導入したものである。しかし、この記号は計算可能な数式で表現するための便宜的なもので、q-ポリガンマ関数が q-ガンマ関数の対数の逐次微分から得られるという定義そのものは変わらない。したがって、一般に定着している q-ポリガンマ関数と全く同じ値を与える。

q-ポリガンマ関数の記号

 実変数の q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。q=0.02~0.98 (+0.02)。
  • q-ポリガンマ関数のグラフ(実変数)

 zを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 zを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 qを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 qを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

q-ポリガンマ関数の記号

 実変数の q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。q=0.02~0.98 (+0.02)。
  • q-ポリガンマ関数のグラフ(実変数)

 zを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 zを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 qを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 qを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

q-ポリガンマ関数の記号

 実変数の q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。q=0.02~0.98 (+0.02)。
  • q-ポリガンマ関数のグラフ(実変数)

 zを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 zを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 qを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

 qを複素変数とする q-ポリガンマ関数q-ポリガンマ関数の記号のグラフ。(q-テトラガンマ関数になると、前掲のグラフと一致してしまう。)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)
  • q-ポリガンマ関数のグラフ(複素変数)

q-ベータ関数

 q-ベータ関数は、q-ガンマ関数との間で次の関係がある。
q-ベータ関数の定義
これは、通常のベータ関数とガンマ関数との関係式を q-類似したものである。第1種 Euler 積分の q-類似は、Thomae 積分q-二項展開によって
  • q-ベータ関数のThomae積分表示式
と解釈される。ここに
q-ベータ関数のq-二項展開部分
であるので、極限操作q→1によって
q-ベータ関数のq-二項展開部分の極限
となり、通常の第1種 Euler 積分すなわちベータ関数となる。
 q-ベータ関数も、q-ガンマ関数と同様に他の q-特殊関数に付随して現れることが多い。

q-ベータ関数の記号

 実2変数の q-ベータ関数q-ベータ関数の記号のグラフ。(②は①を異なる方向から。④は値域の座標を逆双曲線正弦関数で圧縮した場合。)

 実2変数の q-ベータ関数q-ベータ関数の記号のグラフ。(②は①を異なる方向から。④は値域の座標を逆双曲線正弦関数で圧縮した場合。)

 実2変数の q-ベータ関数のグラフ。 順に、①q-ベータ関数の記号, ②q-ベータ関数の記号, ③q-ベータ関数の記号, ④q-ベータ関数の記号

q-Euler 定数

 q-Euler 定数とは、q-ポリガンマ関数におけるz=1での値
  • q-Euler定数の定義
をもとに定義される、Euler 定数γ、および整数点での Riemann ゼータ関数の値についての q-類似である。
 極限操作q→1によって
q-Euler定数が還元される場合
に移行する。複素関数としての q-Euler 定数は、-∞~0を分枝切断線とし単位円を真性特異線 (真性特異点が周密に集まった曲線) とする。

q-Euler定数の記号

 実変数の q-Euler 定数q-Euler定数の記号のグラフ。②は①の一部分を拡大した場合。いずれも m=0~10 (+1)。

 複素変数の q-Euler 定数q-Euler定数の記号のグラフ。
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)

 複素変数の q-Euler 定数q-Euler定数の記号のグラフ。
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)

 複素変数の q-Euler 定数q-Euler定数の記号のグラフ。
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)

 複素変数の q-Euler 定数q-Euler定数の記号のグラフ。
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)
  • q-Euler定数のグラフ(複素変数)

q-特殊関数 Menu