特殊関数 Menu

非線形微分方程式の解となる関数

Van der Pol 関数 (Van der Pol の微分方程式の解)

日:Van der Polの微分方程式ファン・デル・ポール方程式
英:Van der Pol equation,仏:Équation différentielle de Van der Pol,独:Van der Pol-Differentialgleichung

 2階の非線形常微分方程式
Van der Polの微分方程式
を、Van der Pol の微分方程式といい、解Van der Pol関数の記号を、Van der Pol 関数という。ここに、
  • Van der Pol関数の初期値
は初期値である。
 B. Van der Pol は、この微分方程式および後述の強制振動型 Van der Pol の微分方程式を理論的に研究するとともに、アナログ真空管回路を用いたシミュレーションによっても詳しく研究した。強制振動型 Van der Pol の微分方程式は、Van der Pol の微分方程式において強制振動項δ*sin(κz)が追加された微分方程式である。
 Van der Pol の微分方程式は、楽器などの弦の振動モデルとして Rayleigh (J. W. Strutt)が導いた、非線形減衰関数fを持つ微分方程式
  • Rayleighの非線形減衰微分方程式
の特別な場合である。つまり、Van der Pol の微分方程式は、3極管に由来する非線形特性として関数fが3次多項式であるとしたものである。
 この場合のように、dv/dzと同じ向きに働くよう関数fを選ぶと、「減衰振動」 とは言うものの、実際には絶えず振動にエネルギーが供給される状態、すなわち自励系振動となる。これは極限時間経過後において安定的な周期振動に漸近する。
 一般に、非線形常微分方程式
一般的なn階の非線形常微分方程式
の解の大域的な振る舞いは、関数一般的なn階の非線形常微分方程式の解それぞれを単体として見るよりも、zを媒介変数とする、n次元位相空間上の軌道一般的なn階の非線形常微分方程式の解軌道として見たほうが都合がよい。
 例えば、解の唯一性から、初期値の異なる軌道は互いに交わらないことが判明する。特に、軌道が極限時間経過後に安定運動に到達する場合、この吸引集合(アトラクターと呼ばれる)の形状が一目瞭然となる。このような解の軌道に着目する方法は、H. Poincaré によって始められた※1。
 アトラクターはその形状に応じていくつかの種類がある。2次元位相空間であれば、不動点となる「ポイントアトラクター」、閉曲線となる「リミットサイクル」、非整数次元の形状やフラクタル形状となる「ストレンジアトラクター」があり、前2者は複数個出現することも珍しくない(微分方程式の非線形性の原因が超越関数による場合は、無限個出現することもある)。
 Van der Pol の微分方程式のアトラクターは、原点を中心とする1個のリミットサイクルとなり、すべての軌道は初期値に応じてリミットサイクルの内部または外部に巻き付くように漸近する。

【註記】
※1:しかしながら、以後この頁では、Poincaré の方法からは逸れたU(z)単体の振る舞いも考える。
 そもそも、この頁で扱う微分方程式の解は、(Blasius 関数を除いて) いずれも複素関数として考察すること自体が希であり、したがって関数記号も (Lane - Emden 関数以外は) やむを得ず独自に導入したものである。
 Poincaré が上記の方法を導入した動機は、天体力学における多体問題にあった。任意の時刻を変数とする関数としてこの解を求めることは極めて困難なので、代わりに、解が常に有界な範囲に留まるかどうか(=天体が周回し続けるか、または途中で離脱するか?)に問題の視点を移したのである。

Van der Pol関数の記号

 実変数の Van der Pol 関数のグラフ。①:Van der Pol関数の記号。②:Van der Pol関数の記号。③:Van der Pol関数の記号

 位相平面上での Van der Pol 関数。様々な初期値からの軌道を重ね描きした図。背景色はスカラー場の強度に基づく。
 ①:Van der Pol関数の記号。②:Van der Pol関数の記号

 複素変数の Van der Pol 関数Van der Pol関数の記号のグラフ。
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)

 複素変数の Van der Pol 関数Van der Pol関数の記号のグラフ。
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)

 複素変数の Van der Pol 関数の導関数Van der Pol関数の導関数の記号のグラフ。
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)

 複素変数の Van der Pol 関数の導関数Van der Pol関数の導関数の記号のグラフ。
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)
  • Van der Pol関数のグラフ(複素変数)

Duffing 関数 (Duffing の微分方程式の解)

日:Duffingの微分方程式ダフィン方程式
英:Duffing equation,仏:Équation différentielle de Duffing,独:Duffing-Differentialgleichung

 2階の非線形常微分方程式
  • Duffingの微分方程式
を、Duffing の微分方程式といい、解Duffing関数の記号を、Duffing 関数という。ここに、
  • Duffing関数の初期値
は初期値である。Duffing の微分方程式はその表示から、2井戸形ポテンシャル中にある質点が周期的外力を受け続けるときの運動を表わすものとされ、1918年に G. Duffing によって詳しい研究が始まった。
 強制振動項δ*cos(z)を有することも一因であるが、一般に Duffing の微分方程式の解は複雑な様相を呈し、特定パターンの不規則な繰り返しからなる非周期振動となる。また、同じ微分方程式系であっても、初期値のわずかな差が時間とともに指数関数的に増大するため、有限時間経過後の振動は互いに無相関になるという「バタフライ効果」が顕著な例として、Duffing の微分方程式は古くから知られていたものである。
 さらに、Duffing の微分方程式は係数α~δや初期値に応じて、その解が様々な種類のアトラクターを持ちうる。特に、前述の非周期振動の場合はストレンジアトラクターを持つことが重要な性質であり、微分方程式での現象例として初めて、1961年に物理学者の上田 睆亮が Duffing の微分方程式で発見した。
 なお、アトラクターの形状は、zの周期点における軌道点の集合(これをストロボ点という)を見ることによって、さらに詳しく分析できる。ストレンジアトラクターは全体として有界領域であるが、領域と非領域とが互いに細く周密に入り組んだ墨流し形状となる。これが、先のバタフライ効果が生じる理由でもある。すなわち、初期値のわずかな摂動によって軌道がストレンジアトラクターの領域間を移動する。
 ストレンジアトラクターが生成される過程を説明しようとして S. Smale らは、折りたたんで馬蹄形にしたパイ生地全体をさらに折りたたんで馬蹄形にするという無限操作との相似性から、「馬蹄形力学」と呼ばれる変換写像を導入した。

Duffing関数の記号Duffing関数の記号

 実変数の Duffing 関数のグラフ。
 ①:Duffing関数の記号,Duffing関数の記号
 ②:ストレンジアトラクターを持つ「上田の解」Duffing関数の記号,Duffing関数の記号

 上田の解をより広い範囲で見るとともに、初期値がわずかに異なる解Duffing関数の記号と比較する。
  • Duffing関数のグラフ(実変数)

 上田 の解の位相平面上での軌道Duffing関数の記号Duffing関数の記号とともに、2πごとのストロボ点を0~20πまで表示した図。
  • Duffing関数のグラフ(位相平面上)

 100万までの2πごとのストロボ点で描画した、上田の解のストレンジアトラクター。同様の図が、J. M. T. Thompson,H. B. Stewart 著「非線形力学とカオス-技術者・科学者のための幾何学的手法」にもある。
  • Duffing関数のグラフ(ストレンジアトラクター)

 実変数の Duffing 関数Duffing関数の記号,Duffing関数の記号のグラフ。
 これは、減衰項の係数α、および強制振動項の係数δが比較的小さい場合で、2個のポイントアトラクターを持つ。
  • Duffing関数のグラフ(実変数)

 2個のポイントアトラクターを持つ Duffing 関数が、有限時間後にそのどちらに吸引されるかを表わした初期値関数の図。
 ①:吸引が強い場合Duffing関数の記号
 ②:吸引が弱い場合Duffing関数の記号

 複素変数の Duffing 関数Duffing関数の記号のグラフ。
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)

 複素変数の Duffing 関数Duffing関数の記号のグラフ。
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)

 複素変数の Duffing 関数Duffing関数の記号のグラフ。
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)

 複素変数の Duffing 関数の導関数Duffing関数の導関数の記号のグラフ。
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)

 複素変数の Duffing 関数の導関数Duffing関数の導関数の記号のグラフ。
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)

 複素変数の Duffing 関数の導関数Duffing関数の導関数の記号のグラフ。
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)
  • Duffing関数のグラフ(複素変数)

非強制振動型 Duffing 関数 (非強制振動型 Duffing の微分方程式の解)

 2階の非線形常微分方程式
非強制振動型Duffingの微分方程式
は、Duffing の微分方程式において、強制振動項δ*cos(z)を定数項δに置き換えたものである。これを非強制振動型 Duffing の微分方程式といい、解非強制振動型Duffing関数の記号を、非強制振動型 Duffing 関数という。ここに、
  • 非強制振動型Duffing関数の初期値
は初期値である。微分方程式の形から非強制振動型 Duffing 関数は、さしずめ減衰振動化した楕円関数といった様相になる。事実、α=0のとき解w楕円関数となり、そうでない一般の場合も楕円関数の特徴を持つことが複素変数のグラフからも分かる。
 ポテンシャルエネルギーが関数Fであるとした場合の、減衰振動系の微分方程式
ポテンシャルエネルギーFの減衰振動系微分方程式
の解はポイントアトラクターを持ち、Fの極小点がその個数を決める。このうち、非強制振動型 Duffing の微分方程式は、
非強制振動型DuffingのポテンシャルエネルギーF
とした場合なので、1または2個のポイントアトラクターを持つ。特に2個の場合、ポイントアトラクター間を行き交いながら最終的にどちらか一方に吸引されるような解となる。

非強制振動型Duffing関数の記号非強制振動型Duffing関数の記号

 実変数の非強制振動型 Duffing 関数のグラフ。
 ①:非強制振動型Duffing関数の記号,非強制振動型Duffing関数の記号
 ②:非強制振動型Duffing関数の記号,非強制振動型Duffing関数の記号

 位相平面上での非強制振動型 Duffing 関数。様々な初期値からの軌道を重ね描きした図。背景色はスカラー場の強度。
 ①:非強制振動型Duffing関数の記号非強制振動型Duffing関数の記号
 ②:非強制振動型Duffing関数の記号非強制振動型Duffing関数の記号

 2個のポイントアトラクターを持つ非強制振動型 Duffing 関数が、有限時間後にそのどちらに吸引されるかを表わした初期値関数の図。
 ①:δ=0の場合非強制振動型Duffing関数の記号。②:δ≠0の場合非強制振動型Duffing関数の記号

 複素変数の非強制振動型 Duffing 関数非強制振動型Duffing関数の記号のグラフ。
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)

 複素変数の非強制振動型 Duffing 関数非強制振動型Duffing関数の記号のグラフ。
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)

 複素変数の非強制振動型 Duffing 関数の導関数非強制振動型Duffing関数の導関数の記号のグラフ。
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)

 複素変数の非強制振動型 Duffing 関数の導関数非強制振動型Duffing関数の導関数の記号のグラフ。
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)
  • 非強制振動型Duffing関数のグラフ(複素変数)

強制振動型 Van der Pol 関数 (強制振動型 Van der Pol の微分方程式の解)

 Van der Pol の微分方程式において強制振動項を考慮した、2階の非線形常微分方程式
  • 強制振動型Van der Polの微分方程式
を、強制振動型 Van der Pol の微分方程式といい、解強制振動型Van der Pol関数の記号を、強制振動型 Van der Pol 関数という。または、Rayleigh - Van der Pol の微分方程式、および Rayleigh - Van der Pol 関数ともいう。ここに、
  • 強制振動型Van der Pol関数の初期値
は初期値である。強制振動型 Van der Pol 関数は、μ=0のとき三角関数で表わせる。
 Van der Pol は1927年にアナログ真空管回路を用いて、この微分方程式の解が定数μ,ν,δ,κに係わらず初期値のみによって異なるリミットサイクルを持つことを発見した。
 強制振動型 Van der Pol の微分方程式が、ストレンジアトラクターの解を含む方程式かどうかは不明である。

強制振動型Van der Pol関数の記号強制振動型Van der Pol関数の記号

 実変数の強制振動型 Van der Pol 関数のグラフ。
 ①:強制振動型Van der Pol関数の記号,強制振動型Van der Pol関数の記号
 ②:強制振動型Van der Pol関数の記号,強制振動型Van der Pol関数の記号

 位相平面上の軌道とともに、2πごとのストロボ点を-10π~20πまで表示した図。
 ①:強制振動型Van der Pol関数の記号強制振動型Van der Pol関数の記号
 ②:強制振動型Van der Pol関数の記号強制振動型Van der Pol関数の記号

 -1000から100万までの2πごとのストロボ点で描画した、強制振動型Van der Pol関数の記号強制振動型Van der Pol関数の記号のアトラクター。
  • 強制振動型Van der Pol関数のグラフ(アトラクター)

 実変数の強制振動型 Van der Pol 関数強制振動型Van der Pol関数の記号,強制振動型Van der Pol関数の記号のグラフ。νが負数の場合は、かなり異なった様相を呈する。
  • 強制振動型Van der Pol関数のグラフ(実変数)

 複素変数の強制振動型 Van der Pol 関数強制振動型Van der Pol関数の記号のグラフ。
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)

 複素変数の強制振動型 Van der Pol 関数強制振動型Van der Pol関数の記号のグラフ。
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)

 複素変数の強制振動型 Van der Pol 関数強制振動型Van der Pol関数の記号のグラフ。
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)

 複素変数の強制振動型 Van der Pol 関数の導関数強制振動型Van der Pol関数の導関数の記号のグラフ。
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)

 複素変数の強制振動型 Van der Pol 関数の導関数強制振動型Van der Pol関数の導関数の記号のグラフ。
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)

 複素変数の強制振動型 Van der Pol 関数の導関数強制振動型Van der Pol関数の導関数の記号のグラフ。
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)
  • 強制振動型Van der Pol関数のグラフ(複素変数)

Lotka - Volterra 関数 (Lotka - Volterra の微分方程式の解)

日:Lotka-Volterraの微分方程式ロトカ-ヴォルテラ方程式
英:Lotka-Volterra equation,仏:Équation de Lotka-Volterra,独:Lotka-Volterra-Gleichungen

 連立の1階非線形微分方程式
Lotka-Volterraの微分方程式
を、Lotka - Volterra の微分方程式という。狭義の Lotka - Volterra の微分方程式とは、このうち
  • 狭義のLotka-Volterra微分方程式の条件
となる場合を言う。このとき解x(z),y(z)は競合する2種の生物個体数(x=被食者数, y=捕食者数)の変動を表わすものとして知られている。
 連立1階非線形微分方程式をxについて整理すると、2階非線形常微分方程式
  • Lotka-Volterra方程式(2階常微分方程式)
となる。この解Lotka-Volterra関数の記号を、Lotka - Volterra 関数と呼ぶ。ここに、
  • Lotka-Volterra関数の初期値
は初期値である。
 yについて整理した場合の微分方程式とその解Lotka-Volterra関数の記号は、同じ微分方程式および関数Lotka-Volterra関数の記号において
  • Lotka-Volterra関数の関係
なる変換を施したものになる。また、2種個体数の初期値の関係は
  • Lotka-Volterra関数の初期値の関係
をもとに決めることができる。
 狭義の Lotka - Volterra の微分方程式は、常に周期解となるためポイントアトラクターを持たない。しかし一般の場合において係数が
  • 減衰振動となるLotka-Volterra方程式の条件
を満たすときは減衰振動解、すなわちポイントアトラクターを持つ。さらに、係数がもっと一般的な場合には、解が有界でないこともある。なお、一般の Lotka-Volterra の微分方程式が Painlevé 性を持つのは、係数が
  • 楕円関数に還元されるLotka-Volterra方程式の条件
となる場合(楕円関数に還元される場合)のみで、これは狭義の Lotka-Volterra の微分方程式に含まれない。
 S. V. Volterra は、第1次世界大戦前後での漁獲量変動の説明としてこの微分方程式を用いたが、すでに A. J. Lotka によって同形の微分方程式が研究されていることが後年に判明したため、Lotka - Volterra の微分方程式と呼ばれるようになった。
 一般に、このような連立非線形微分方程式で表わされる系は、生物学や化学など学術の広範囲で現れる (例えば、ブリュセレーター(ブリュッセル学派)方程式など)。また、それらの系では3連あるいは4連以上となることも珍しくない。後述の Lorenz 方程式は、3連非線形微分方程式の例として有名である。

Lotka-Volterra関数の記号Lotka-Volterra関数の記号

 実変数の Lotka - Volterra 関数のグラフ。
 ①:周期解Lotka-Volterra関数の記号,Lotka-Volterra関数の記号
 ②:減衰振動解Lotka-Volterra関数の記号,Lotka-Volterra関数の記号

 位相平面上の Lotka - Volterra 関数の軌道図。
 ①:周期解Lotka-Volterra関数の記号Lotka-Volterra関数の記号
 ②:減衰振動解Lotka-Volterra関数の記号Lotka-Volterra関数の記号

 複素変数の Lotka - Volterra 関数Lotka-Volterra関数の記号のグラフ。
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)

 複素変数の Lotka - Volterra 関数Lotka-Volterra関数の記号のグラフ。
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)

 複素変数の Lotka - Volterra 関数Lotka-Volterra関数の記号のグラフ。
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)

 以降は、パラメータが通常の Lotka - Volterra 関数の範囲を超える場合である。
 実変数の Lotka - Volterra 関数Lotka-Volterra関数の記号,Lotka-Volterra関数の記号のグラフ。
  • Lotka-Volterra関数のグラフ(実変数)

 複素変数の Lotka - Volterra 関数Lotka-Volterra関数の記号のグラフ。
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)
  • Lotka-Volterra関数のグラフ(複素変数)

Lorenz 関数 (Lorenz の微分方程式の解)

日:Lorenzの微分方程式ローレンツ方程式
英:Lorenz equation,仏:Équation de Lorenz,独:Lorenz-Gleichungen

バタフライ効果 - 蝶の羽ばたき程度の擾乱は、遠方で劇的な気象を起こしうるか? ”

 前述の Lotka - Volterra の微分方程式のように、複数個の時間的変動量が相互依存の関係にある系は、自然な方法で連立非線形微分方程式に表わすことができ、その解の組は多次元の位相空間内で軌道を描くことをこれまで見てきたが、専ら2次元の場合であった。ここでは3次元になる例として Lorenz の微分方程式を扱う。
 1963年に気象学者の E. N. Lorenz は、大気圏の上層と下層の温度差が空気の対流を生む現象を数学的に論じるため、これを単純化したモデル、例えば、水を張った鍋を底面から加熱した時に生じる流体の運動や熱の移動について定式化した。それでも方程式は非常に複雑になるので、実際には更なる単純化によって、流速関数および温度の線形成分からの相異関数の満たす微分方程式に帰着させ、各関数を Fourier 級数に展開したときの時刻t依存の Fourier 係数のうち、寄与の大きい3係数x(t), y(t), z(t)の間で満たされる3連非線形微分方程式
Lorenzの微分方程式
の数値解を代わりに調べて、Lorenz は前述の現象を論じた。ここに、σは流体の粘性/熱伝導係数で決まる正定数、βは流体の深さと横幅から求められる正定数、ρは流体の上下境界間の温度差に比例する正定数である。このような理由から、上記の連立非線形微分方程式は、Lorenz の微分方程式 (または、Lorenz 方程式、Lorenz 系) と呼ばれる。
 Lorenz の微分方程式は、解の位相空間を{x(t), y(t), z(t)}とするとき、一般に原点O={0, 0, 0}並びにP={xc, xc, zc}, P'={-xc, -xc, zc} (ここに、xc=Sqrt[β*(ρ-1)], zc=ρ-1) の3点を不動点とするが、その現れ方は正定数ρの値によって異なる※1。
ρ<1:安定不動点Oのみ。(Oはポイントアトラクター。)
1<ρ<ρc:不安定不動点Oおよび安定不動点P, P'。(PまたはP'はポイントアトラクター。)
ρ>ρc:不安定不動点O, P, P'
 ここに、ρcの定義なる定数とする。

 特にρ>ρcの場合、解の軌道点はPまたはP'へ接近したのち有限回周回しながら徐々に離脱し、反対側のP'またはPに再接近するという運動を繰り返すが、接近のときに突入する軌道間隙の位置、周回の回数はランダムである。この反復運動によって、軌道の吸引集合は何度も折りたたみと引き延ばしを受け、Cantor 集合的な断面を持つ無限多層構造となる。現在、この吸引集合は 「Lorenz アトラクター」 と呼ばれており、ストレンジアトラクターの例を与えるものとして (上田睆亮による Duffing 方程式でのそれと同時期に) 発見された。Lorenz がそれを見出した具体的なパラメータ例σ=10, β=8/3, ρ=28は、最もよく知られている。
 先の物理的な意味では、1<ρ<ρcが蜂の巣状のセルを持つ対流、および乱流までの移行期に相当し、ρ>ρcが無秩序な乱流に相当する (対流や乱流の運動そのものを記述する訳ではない)。
 物理的意味からは逸れるが、ρ>ρcの範囲には解が漸近的に周期軌道となる (3次元のリミットサイクルを持つ) 「窓」 のような区間が存在する。先のσ=10, β=8/3なるパラメータ例では、
漸近的周期軌道となるρの区間例
がそのような区間になることが知られている。
 以降では、Lorenz の微分方程式の解についても複素関数的な扱いを試みる。このとき、直接数値的に求めた解を 「Lorenz 関数」 と称し、初期条件を明示した関数記号
  • Lorenz関数の記号
で表記することにする (独自の記号である)。

【註記】
※1:時刻tを明示的に含まない形 (自律系) の連立微分方程式
  • 自律系の連立微分方程式
における 「不動点」 とは、fk(w1, w2, ..., wn)=0となるような位相空間内の点{w1, w2, ..., wn}のことである。その名称は、不動点を初期値とする解が時刻tに係わらず恒等的に一定値となることに因む。
 不動点の 「安定」・「不安定」 とは、t→+∞としたときに不動点近傍の軌道がどのように挙動するかを区別する名称で、すべての軌道が吸引される場合を安定、一部の例外を除いて反発する場合を不安定という。そのとき軌道は、不動点を結節点や渦状点、鞍状点とするように振る舞う。
ρ=1のように安定・不安定の境界線上になる場合、不動点は退化し (退化不動点となり)、異なる定常状態の解への分岐点となる。
 不動点の安定性のみではなく、不動点周りの軌道の振る舞いまで含めて考えれば、ρの場合分けは上記よりも細かくなる。それを、軌道の反復運動を生じるセパレータの変形や Lorenz アトラクターが発生するメカニズム等と比較しながら論じた詳しい説明が、J. M. T. Tompson & H. B. Stewart 著 「非線形力学とカオス」 の第11章 「Lorenz 系」 にある。

Lorenz関数の記号1Lorenz関数の記号2

 実変数の Lorenz 関数Lorenz関数の記号(xl), Lorenz関数の記号(yl), Lorenz関数の記号(zl)のグラフ。
  • Lorenz関数のグラフ(実変数)

 位相空間内のLorenz関数の記号(xl), Lorenz関数の記号(yl), Lorenz関数の記号(zl)の軌道図。これは Lorenz アトラクターを持つ例である。
  • Lorenz関数のグラフ(位相空間内)
  • Lorenz関数のグラフ(位相空間内)

 複素変数の Lorenz 関数Lorenz関数の記号(xl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 複素変数の Lorenz 関数Lorenz関数の記号(yl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 複素変数の Lorenz 関数Lorenz関数の記号(zl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 実変数の Lorenz 関数Lorenz関数の記号(xl), Lorenz関数の記号(yl), Lorenz関数の記号(zl)のグラフ。
  • Lorenz関数のグラフ(実変数)

 位相空間内のLorenz関数の記号(xl), Lorenz関数の記号(yl), Lorenz関数の記号(zl)の軌道図。これは2個のポイントアトラクターのうち一方に吸引され、その周囲で渦状の軌道を描く。
  • Lorenz関数のグラフ(位相空間内)
  • Lorenz関数のグラフ(位相空間内)

 複素変数の Lorenz 関数Lorenz関数の記号(xl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 複素変数の Lorenz 関数Lorenz関数の記号(yl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 複素変数の Lorenz 関数Lorenz関数の記号(zl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 実変数の Lorenz 関数Lorenz関数の記号(xl), Lorenz関数の記号(yl), Lorenz関数の記号(zl)のグラフ。
  • Lorenz関数のグラフ(実変数)

 位相空間内のLorenz関数の記号(xl), Lorenz関数の記号(yl), Lorenz関数の記号(zl)の軌道図。これは原点に1個のポイントアトラクターを持つが、強く吸引されるため周囲でほとんど渦状にならない。
  • Lorenz関数のグラフ(位相空間内)

 複素変数の Lorenz 関数Lorenz関数の記号(xl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 複素変数の Lorenz 関数Lorenz関数の記号(yl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 複素変数の Lorenz 関数Lorenz関数の記号(zl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 実変数の Lorenz 関数Lorenz関数の記号1(xl)Lorenz関数の記号2(xl), Lorenz関数の記号1(yl)Lorenz関数の記号2(yl), Lorenz関数の記号1(zl)Lorenz関数の記号2(zl)のグラフ。
  • Lorenz関数のグラフ(実変数)

 位相空間内のLorenz関数の記号1(xl)Lorenz関数の記号2(xl), Lorenz関数の記号1(yl)Lorenz関数の記号2(yl), Lorenz関数の記号1(zl)Lorenz関数の記号2(zl)の軌道図。これはリミットサイクルを持つ例である (初期値はリミットサイクルにかなり近い値)。
  • Lorenz関数のグラフ(位相空間内)

 複素変数の Lorenz 関数Lorenz関数の記号1(xl)Lorenz関数の記号2(xl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 複素変数の Lorenz 関数Lorenz関数の記号1(yl)Lorenz関数の記号2(yl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 複素変数の Lorenz 関数Lorenz関数の記号1(zl)Lorenz関数の記号2(zl)のグラフ。
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)
  • Lorenz関数のグラフ(複素変数)

 アニメーション①(3.58MB)
 Lorenz 方程式の解の軌道が変形する様子。σ=10, β=8/3, ρ=0.5~30 (+0.5)。初期値は、描画範囲を表わす立方体の6面上に格子状に並ぶ点列とする。
  • Lorenz方程式の解の軌道(動画1)

 アニメーション②(1.48MB)
 Lorenz 方程式の解が漸近的に周期軌道となる 「窓」 区間の周辺。σ=10, β=8/3, ρ=98.9~101 (+0.025)。初期値は、x0=3.854, y0=9.988, z0=55.73。
  • Lorenz方程式の解の軌道(動画2)

Blasius 関数

日:Blasius関数ブラジウス関数
英:Blasius function,仏:Fonction de Blasius,独:Blasius-funktion

 3階の非線形常微分方程式である、Blasius の微分方程式
Blasiusの微分方程式
の解Blasius関数 y=B(z)のうち、特に初期条件が
  • Blasiusの微分方程式の初期条件
となるものを、Blasius 関数という※1。
 Blasius の微分方程式、および Blasius 関数は、流体力学における Blasius 境界層(Blasius boundary layer:一方向かつ一定速度の粘性流体に対して平行に保持された半無限板上に形成される、理想化された安定的な二次元境界層。板によって剪断された流体は、板の表面に近いほど粘性に由来する減速が生じ、一定速度である領域と区別される層を形成する※2。)内部での粘性流体の速度分布を記述するために、1908年に P. R. H. Blasius によって導入された。
 具体的には、流体の元々の一定速度をU∞、流体の動粘性係数をν、流体の剪断が始まる板の縁を原点とする場合の水平距離をx、垂直距離をyとしたとき、xにおける境界層の厚みδ(x)が無理関数
δ(x)の定義式
で表わされると仮定する。また、yが境界層の厚みと一致したときに1となるような変数η=y/δ(x)yの代わりに導入する。このとき、座標{x, y}における減速された流体の速度U{x, y}は、
U{x, y}の定義式
となる。すなわち、Blasius 関数の導関数はU∞に対する減速割合を表わす係数になる。
 Blasius 関数は、冪級数によって
  • Blasius関数の冪級数展開式
と表わされる。冪級数展開式から、原点中心の3数性
  • Blasius関数の満たす3数性
を満たすことが分かる。
 Blasius 関数の複素平面上における特異点は、閉じた式で表わされない複雑な位置に存在するが、特異点の一つをsとすると、先の3数性から
Blasius関数の特異点の位置における3数性
は必ず特異点となる。さらにこれらが、原点を通り偏角が-π/3, π/3, πとなる3本の直線を中心に、対称となる点もすべて特異点となる。絶対値が最も小さいsの値は、s=-5.6900380545...である※3。

【註記】
※1:標準的な関数記号は存在しない。文献等では、単にf(z)と表記することが多いようである。

※2:これは理想化された条件下での現象であるため、自然界では限られた場合にしか見られない。大抵は些細な原因で擾乱が生じるため、整った層流にはならない。すなわち「乱流」が起きる。

※3:複素領域における Blasius 関数については、例えば次の論文が詳しい。
J. P. Boyd 「The Blasius Function in the Complex Plane」 Experimental Mathematics, Vol.8, No.4 (1999)

Blasius関数とその導関数,第2導関数の記号

 実変数の Blasius 関数Blasius関数の記号,Blasius 関数の導関数Blasius導関数の記号,および Blasius 関数の2位導関数Blasius第2導関数の記号のグラフ。
  • Blasius関数のグラフ(実変数)

 Blasius 導関数を用いて、Blasius 境界層を視覚化する(U∞=5, ν=1)。
 なお、U∞に対してどの速度範囲までを境界層の厚さとするかは、ある程度任意性がある。通常は、δ(x)の定数倍α・δ(x)を便宜的な境界層の厚さとするが、αの決定方法はいくつかあり値も各々異なる。y方向に押し出された流体量の換算に基づく「排除厚さ」を採用した場合は、
  • α=1.720787657520503...
となる。次のグラフでは、排除厚さで見積られる境界層の厚さを、併せて破線で表示している。
  • Blasius境界層の視覚化

 複素変数の Blasius 関数Blasius関数の記号のグラフ。
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)

 複素変数の Blasius 関数の導関数Blasius導関数の記号のグラフ。
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)

 複素変数の Blasius 関数の2位導関数Blasius第2導関数の記号のグラフ。
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)
  • Blasius関数のグラフ(複素変数)

Lane - Emden 関数

日:Lane-Emden関数レーン-エムデン関数
英:Lane-Emden function,仏:Fonction de Lane-Emden,独:Lane-Emden-funktion

 進化の様々な段階における恒星の内部で、温度や圧力,気体の密度が中心からの距離に応じてどのように分布しているかについては、1870年に J. H. Lane が初めて考察した。また、1907年に J. R. Emden は、それまでに他の科学者によって得られていた結果も踏まえて、自身の研究成果をまとめた。このような歴史的経緯に基づき、この問題で考察されるようになった非線形常微分方程式
  • Lane-Emdenの微分方程式
は現在、Lane - Emden の微分方程式と呼ばれる。このとき、ξは中心からの距離に相当する変数で、解y=θn(ξ)は密度に相当する量である (両者の物理量は無次元量で定義される) 。そのうち、特に初期条件が
Lane-Emdenの微分方程式の初期条件
となる偶関数を Lane - Emden 関数という。この初期条件は、恒星の中心から外層に向かう積分を意味するので、Lane - Emden 関数は当該微分方程式の 「中心核解」 と呼ばれる特別解に相当する (逆に、外層から中心に向かう 「外層解」 もあるが、ここでは扱わない) 。また、正の実軸上において最も絶対値が小さい位置にある Lane - Emden 関数の零点から原点までの長さは、恒星の中心から表面までの距離に相当する。
 Lane - Emden の微分方程式は導出の際、圧力pと密度ρとの間にポリトロープ (Polytrope) と呼ばれる単純な関係式
ポリトロープ関係式
が成り立つと仮定されており、さらに、恒星は完全な球形で密度等の分布も球対称であるとし、指数 (または Polytropic index と呼ばれる)nは恒星内部のあらゆる場所で一定値を取ると仮定されているので、実際には多くの理想化が施されている。しかし、現実の観測結果等とある程度整合する近似が得られるため、Lane - Emden 関数は現在でも推定的な計算において使用される。経験的に求められた結果によれば、主系列星は指数nが概ね 1.5~3 の範囲になり、赤色巨星は概ね 3~5 になる。実変数のグラフで見ても、後者ほど密度の高い領域が中心に偏ったような概形となり、実際に判明している赤色巨星の内部構造を良く反映している。(なお、n≧5のとき Lane - Emden 関数は実零点を持たないが、この場合は恒星が表面を持たず、気体が外部へ薄く拡散していると考える。)
 n=0,1,5のときの Lane - Emden 関数は、それぞれ初等関数
  • 初等関数に還元されるLane-Emden関数
に還元されるが、その他の場合は、既知の関数で明示的に表わせないので数値的に求めるしかない※1。一般的な指数の Lane - Emden 関数は、原点を中心に冪級数展開すると
  • Lane-Emden関数の冪級数展開式
となる。特にn=2の場合は、
  • n=2の場合のLane-Emden関数
によって係数を具体的に求めることができる。
 複素変数の Lane - Emden 関数は、指数nの値によってグラフの概形が大きく異なる。例えば、n=2,3の場合は無数の特異点を持つが両者の位数は異なっている。また、前述の初等関数に還元される場合も互いに大きく異なり、順に、多項式,超越整関数,および2個の代数分岐点を持つ無理関数となる。つまり、Lane - Emden の微分方程式自体は単体で定義されるが、その指数nが異なる解それぞれは全く別種の関数に属する※2。

【註記】
※1:以下のグラフでは、指数nが非負整数または半奇数である場合のみを描画する。(なお、NDSolveComplexDomain.m を用いて複素変数のグラフが描画できるのは、n=0,1,2,3,4,5並びにn=1/2,3/2,5/2,7/2に限る。)

※2:この現象は、Lane - Emden の微分方程式がξ=∞の近傍で、
Lane-Emdenの微分方程式の摂動
に摂動することから分かる。つまり、Lane - Emden 関数はξ=∞の近傍で超楕円積分
  • 超楕円積分
の逆関数に近付く。

Lane-Emden関数の記号

 ①実変数の Lane - Emden 関数Lane-Emden関数の記号のグラフ。②その実部Lane-Emden関数の実部の記号のグラフ。ともに、n=0~8 (+0.5) で描画。実部をとると、nが半奇数の場合もグラフが延長される。

 複素変数の Lane - Emden 関数Lane-Emden関数の記号のグラフ。
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)

 複素変数の Lane - Emden 関数Lane-Emden関数の記号のグラフ。
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)

 複素変数の Lane - Emden 関数Lane-Emden関数の記号のグラフ。
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)

 複素変数の Lane - Emden 関数Lane-Emden関数の記号のグラフ。
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)

 複素変数の Lane - Emden 関数Lane-Emden関数の記号のグラフ。
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)

 複素変数の Lane - Emden 関数Lane-Emden関数の記号のグラフ。
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)
  • Lane-Emden関数のグラフ(複素変数)

Lane-Emden導関数の記号

 ①実変数の Lane - Emden 導関数Lane-Emden導関数の記号のグラフ。②その実部Lane-Emden導関数の実部の記号のグラフ。ともに、n=0~8 (+0.5) で描画。実部をとると、nが半奇数の場合もグラフが延長される。

 複素変数の Lane - Emden 導関数Lane-Emden導関数の記号のグラフ。
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)

 複素変数の Lane - Emden 導関数Lane-Emden導関数の記号のグラフ。
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)

 複素変数の Lane - Emden 導関数Lane-Emden導関数の記号のグラフ。
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)

 複素変数の Lane - Emden 導関数Lane-Emden導関数の記号のグラフ。
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)

 複素変数の Lane - Emden 導関数Lane-Emden導関数の記号のグラフ。
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)

 複素変数の Lane - Emden 導関数Lane-Emden導関数の記号のグラフ。
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)
  • Lane-Emden導関数のグラフ(複素変数)

特殊関数 Menu